Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.

Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.

Biochemical and biophysical research communications (2017-05-16)
Junko Wakao, Tsunao Kishida, Shigehisa Fumino, Koseki Kimura, Kenta Yamamoto, Shin-Ichiro Kotani, Katsura Mizushima, Yuji Naito, Toshikazu Yoshikawa, Tatsuro Tajiri, Osam Mazda
ABSTRACT

The skeletal muscle consists of contractile myofibers and plays essential roles for maintenance of body posture, movement, and metabolic regulation. During the development and regeneration of the skeletal muscle tissue, the myoblasts fuse into multinucleated myotubes that subsequently form myofibers. Transplantation of myoblasts may make possible a novel regenerative therapy against defects or dysfunction of the skeletal muscle. It is reported that rodent fibroblasts are converted into myoblast-like cells and fuse to form syncytium after forced expression of exogenous myogenic differentiation 1 (MYOD1) that is a key transcription factor for myoblast differentiation. But human fibroblasts are less efficiently converted into myoblasts and rarely fused by MYOD1 alone. Here we found that transduction of v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog (MYCL) gene in combination with MYOD1 gene induced myoblast-like phenotypes in human fibroblasts more strongly than MYOD1 gene alone. The rate of conversion was approximately 90%. The directly converted myoblasts (dMBs) underwent fusion in an ERK5 pathway-dependent manner. The dMBs also formed myofiber-like structure in vivo after an inoculation into mice at the subcutaneous tissue. The present results strongly suggest that the combination of MYCL plus MYOD1 may promote direct conversion of human fibroblasts into functional myoblasts that could potentially be used for regenerative therapy for muscle diseases and congenital muscle defects.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
XMD8-92, ≥98% (HPLC)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
1 mL
Estimated to ship on 2025年4月21日
Details...
¥1,655.26