Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics.

Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics.

Biomacromolecules (2020-03-10)
Ruut Kummala, Diosángeles Soto Véliz, Zhiqiang Fang, Wenyang Xu, Tiffany Abitbol, Chunlin Xu, Martti Toivakka
ABSTRACT

Biodegradable and renewable materials, such as cellulose nanomaterials, have been studied as a replacement material for traditional plastics in the biomedical field. Furthermore, in chronic wound care, modern wound dressings, hydrogels, and active synthetic extracellular matrices promoting tissue regeneration are developed to guide cell growth and differentiation. Cells are guided not only by chemical cues but also through their interaction with the surrounding substrate and its physicochemical properties. Hence, the current work investigated plant-based cellulose nanomaterials and their surface characteristic effects on human dermal fibroblast (HDF) behavior. Four thin cellulose nanomaterial-based coatings produced from microfibrillar cellulose (MFC), cellulose nanocrystals (CNC), and two TEMPO-oxidized cellulose nanofibers (CNF) with different total surface charge were characterized, and HDF viability and adhesion were evaluated. The highest viability and most stable adhesion were on the anionic CNF coating with a surface charge of 1.14 mmol/g. On MFC and CNC coated surfaces, HDFs sedimented but were unable to anchor to the substrate, leading to low viability.

MATERIALS
Product Number
Brand
Product Description

SAFC
Dulbecco′s Modified Eagle′s Medium - high glucose, HEPES modification, With 4500 mg/L glucose, 25 mM HEPES, and sodium bicarbonate, without L-glutamine and sodium pyruvate, liquid, sterile-filtered, suitable for cell culture
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
24 reactions
Please contact Customer Service for Availability
New, lower price on this item!
¥3,809.69
96 reactions
Please contact Customer Service for Availability
¥15,172.56