Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages.

Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages.

Colloids and surfaces. B, Biointerfaces (2019-06-04)
Hiroyuki Shinto, Tomonori Fukasawa, Kosuke Yoshisue, Nanami Tsukamoto, Saki Aso, Yumiko Hirohashi, Hirokazu Seto
ABSTRACT

It is very important to examine carefully the potential adverse effects of engineered nanoparticles (NPs) on human health and environments. In the present study, we have investigated the impact of interfacial serum proteins on the cell membrane disruption induced by silica NPs of primary diameter of 55-68 nm in four types of cells (erythrocytes, Jurkat, B16F10, and J774.1). The silica-induced membranolysis was repressed by addition of 1-2% serum into culture media, where the adhesion amount of the FBS-coated silica NPs onto a cell surface seemed comparable with that of the bare silica NPs. The nonspecific attraction between the bare silica and J774.1 cell membrane surfaces was masked by pretreatment of the silica surface with serum albumin, whereas the serum proteins-coated silica surface exhibited the attractive interactions with the cell membrane due to specific binding between some of adsorbed proteins thereon and the membrane receptors. The difference in silica-cell interaction between the nonspecific and specific attractions would explain the reason why interfacial serum proteins reduced the membranolysis without prevention of silica NPs adhering to cell surfaces.